skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vasquez, Yumary"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Leafhoppers comprise over 20,000 plant‐sap feeding species, many of which are important agricultural pests. Most species rely on two ancestral bacterial symbionts,SulciaandNasuia, for essential nutrition lacking in their phloem and xylem plant sap diets. To understand how pest leafhopper genomes evolve and are shaped by microbial symbioses, we completed a chromosomal‐level assembly of the aster leafhopper's genome (ALF;Macrosteles quadrilineatus). We compared ALF's genome to three other pest leafhoppers,Nephotettix cincticeps,Homalodisca vitripennis, andEmpoasca onukii, which have distinct ecologies and symbiotic relationships. Despite diverging ~155 million years ago, leafhoppers have high levels of chromosomal synteny and gene family conservation. Conserved genes include those involved in plant chemical detoxification, resistance to various insecticides, and defence against environmental stress. Positive selection acting upon these genes further points to ongoing adaptive evolution in response to agricultural environments. In relation to leafhoppers' general dependence on symbionts, species that retain the ancestral symbiont,Sulcia, displayed gene enrichment of metabolic processes in their genomes. Leafhoppers with bothSulciaand its ancient partner,Nasuia, showed genomic enrichment in genes related to microbial population regulation and immune responses. Finally, horizontally transferred genes (HTGs) associated with symbiont support ofSulciaandNasuiaare only observed in leafhoppers that maintain symbionts. In contrast, HTGs involved in non‐symbiotic functions are conserved across all species. The high‐quality ALF genome provides deep insights into how host ecology and symbioses shape genome evolution and a wealth of genetic resources for pest control targets. 
    more » « less
  2. Angert, Esther (Ed.)
    Abstract Planthoppers in the family Cixiidae (Hemiptera: Auchenorrhyncha: Fulgoromorpha) harbor a diverse set of obligate bacterial endosymbionts that provision essential amino acids and vitamins that are missing from their plant-sap diet. “Candidatus Sulcia muelleri” and “Ca. Vidania fulgoroidea” have been associated with cixiid planthoppers since their origin within the Auchenorrhyncha, whereas “Ca. Purcelliella pentastirinorum” is a more recent endosymbiotic acquisition. Hawaiian cixiid planthoppers occupy diverse habitats including lava tube caves and shrubby surface landscapes, which offer different nutritional resources and environmental constraints. Genomic studies have focused on understanding the nutritional provisioning roles of cixiid endosymbionts more broadly, yet it is still unclear how selection pressures on endosymbiont genes might differ between cixiid host species inhabiting such diverse landscapes, or how variation in selection might impact symbiont evolution. In this study, we sequenced the genomes of Sulcia, Vidania, and Purcelliella isolated from both surface and cave-adapted planthopper hosts from the genus Oliarus. We found that nutritional biosynthesis genes were conserved in Sulcia and Vidania genomes in inter- and intra-host species comparisons. In contrast, Purcelliella genomes retain different essential nutritional biosynthesis genes between surface- and cave-adapted planthopper species. Finally, we see the variation in selection pressures on symbiont genes both within and between host species, suggesting that strong coevolution between host and endosymbiont is associated with different patterns of molecular evolution on a fine scale that may be associated with the host diet. 
    more » « less
  3. Abstract BackgroundThe harlequin ladybirdHarmonia axyridis(Coleoptera: Coccinellidae), native to Asia, has been introduced to other major continents where it has caused serious negative impacts on local biodiversity. Though notable advances to understand its invasion success have been made during the past decade, especially with then newer molecular tools, the conclusions reached remain to be confirmed with more advanced genomic analyses and especially using more samples from larger geographical regions across the native range. Furthermore, althoughH. axyridisis one of the best studied invasive insect species with respect to life history traits (often comparing invasive and native populations), the traits responsible for its colonization success in non-native areas warrant more research. ResultsOur analyses of genome-wide nuclear population structure indicated that an eastern Chinese population could be the source of all non-native populations and revealed several putatively adaptive candidate genomic loci involved in body color variation, visual perception, and hemolymph synthesis. Our estimates of evolutionary history indicate (1) asymmetric migration with varying population sizes across its native and non-native range, (2) a recent admixture between eastern Chinese and American populations in Europe, (3) signatures of a large progressive, historical bottleneck in the common ancestors of both populations and smaller effective sizes of the non-native population, and (4) the southwest origin and subsequent dispersal routes within its native range in China. In addition, we found that while two mitochondrial haplotypes-Hap1 and Hap2 were dominant in the native range, Hap1 was the only dominant haplotype in the non-native range. Our laboratory observations in both China and USA found statistical yet slight differences between Hap1 and Hap2 in some of life history traits. ConclusionsOur study onH.axyridisprovides new insights into its invasion processes into other major continents from its native Asian range, reconstructs a geographic range evolution across its native region China, and tentatively suggests that its invasiveness may differ between mitochondrial haplotypes. 
    more » « less
  4. Emerson, J J (Ed.)
    Abstract Dinocampus coccinellae (Hymenoptera: Braconidae) is a generalist parasitoid wasp that parasitizes >50 species of predatory lady beetles (Coleoptera: Coccinellidae), with thelytokous parthenogeny as its primary mode of reproduction. Here, we present the first high-quality genome of D. coccinellae using a combination of short- and long-read sequencing technologies, followed by assembly and scaffolding of chromosomal segments using Chicago + HiC technologies. We also present a first-pass ab initio and a reference-based genome annotation and resolve timings of divergence and evolution of (1) solitary behavior vs eusociality, (2) arrhenotokous vs thelytokous parthenogenesis, and (3) rates of gene loss and gain among Hymenopteran lineages. Our study finds (1) at least 2 independent origins of eusociality and solitary behavior among Hymenoptera, (2) 2 independent origins of thelytokous parthenogenesis from ancestral arrhenotoky, and (3) accelerated rates of gene duplications, loss, and gain along the lineages leading to D. coccinellae. Our work both affirms the ancient divergence of Braconid wasps from ancestral Hymenopterans and accelerated rates of evolution in response to adaptations to novel hosts, including polyDNA viral coevolution. 
    more » « less